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Abstract
We investigate transport in 2D mesoscopic electron systems with disorder
assuming a percolation mechanism through a network of disconnected
conducting metallic domains. The size of the domains is determined by
the level of disorder and the strength of the electron correlations. The
domains are linked for transport by two competing mechanisms. The first
mechanism is familiar thermally activated hopping. The second is quantum
tunnelling between adjacent conducting regions bounded by equipotential
contours of the same value. This mechanism leads to temperature-independent
transmission at low temperatures. We calculate the transmission across the
potential barriers separating adjacent domains, and we obtain agreement with
recent experimental measurements of temperature-dependent resistivities in
mesoscopic 2D systems. We also obtain consistent values for the spatial
separation of the domains and the average variation in the random disorder
potential. Finally, we show that the effect of quantum coherence can result in a
small downturn in the resistivity at low temperatures, again in good agreement
with the recent experimental results.

PACS numbers: 73.20.Dx, 71.30.+h, 73.40.−c

(Some figures in this article are in colour only in the electronic version)

The interplay between electron correlations and disorder plays a central role in determining
the transport properties of dilute two-dimensional (2D) electron systems [1]. The nature
of the ground state of these systems is determined by competition between the random potential
fluctuations from disorder and the interactions between the electrons.

In modulation-doped GaAs/AlGaAs heterojunctions, the main source of disorder comes
from the remote charged ions in the doping layer. The strength of the disorder depends
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sensitively on the width δ of the undoped spacer layer separating the 2D electron system from
the dopants. Typical values of δ are ∼50 nm. Imaging of the disorder in these systems suggests
the dominant disorder length scale in modulation-doped GaAs/AlGaAs heterostructures is
greater than 0.5 μm and hence much greater than δ [2, 3]. These experimental data indicate
that long-range disorder dominates on a macroscopic length scale. In the very high mobility
2D electron layers in undoped GaAs/AlGaAs heterojunctions [4] the electron layer is field
induced. However, even in the absence of a doping layer it is believed that long-range disorder
dominates due to randomly distributed residual charged impurities, and very recent studies of
undoped mesoscopic structures show signatures of background disorder [5].

For disorder that is mainly long range, the system can be expected to become increasingly
inhomogeneous at low electron densities, and the random potential fluctuations may create
a percolative second-order transition in the transport coefficients. The potential fluctuations
could create domains consisting of regions of lower and higher density [4, 6]. As the average
electron density is decreased this can lead to a classical insulator to metal transition [7].

Experimental evidence for localized domains has been found in gated GaAs
heterostructures using near field spectroscopy with sub-wavelength resolution [8]. Negatively
charged exciton luminescence is used to image the spatial distribution of the electrons in a
2D layer. In the range of gate voltages where the conductivity drops, the electrons have been
shown to be localized inside the potential fluctuations of the remote ionized donors. The
spectral signature of regions filled with localized electrons was very different from regions
containing conducting electrons. Similar evidence of spatial inhomogeneities at low carrier
densities has been observed in scanning probe measurements [9].

If long-range disorder is strong and dominant, then transport will obey classical percolation
theory, and the interactions between electrons will be a secondary effect [4]. In order to separate
out the effect of short-range fluctuations from disorder, Baenninger et al [10] have recently
compared transport in large-area macroscopic and narrow mesoscopic 2D electron systems in
modulation-doped GaAs/AlGaAs gated structures. In the large-area macroscopic samples,
transport is determined by the large long-range fluctuations, and the expected insulating
behaviour was observed for the range of electron densities studied. However, the lengths
of the mesoscopic devices, ∼1 μm, are smaller or comparable to the length scale of long-
range disorder, so that the long-range disorder potential is practically constant across the
mesoscopic systems (figure 1). This permits residual short-range fluctuations of the random
impurity potential to dominate transport properties for these systems.

For the experiments in [10] a metal top gate was used to tune the electron density across
a range which was always well inside the insulating phase. The electrons were degenerate,
with Fermi temperatures 4 � TF � 7 K. Down to temperatures T ∼ 1 K, the resistivity ρ(T )

was observed to follow the familiar insulator-like activated temperature dependence, but for
temperatures lower than a crossover temperature Tθ ∼ 1 K the behaviour of ρ(T ) changed
dramatically. It either saturated (see, for example, the experimental data points from [10] in
figure 2(a)), or else there was a turn-over and ρ(T ) actually decreased slightly when T was
further decreased (see, for example, the data points in figure 2(b)). This crossover behaviour
occurred for resistivities as high as ρ ∼ 400 h̄/e2, and was observed over two orders of
magnitude in the resistivity.

Here we discuss theoretical evidence that both the saturation and the turn-over of ρ(T ) at
low T are due to quantum effects associated with tunnelling between states of the same energy
in adjacent disconnected conducting regions in the insulating phase.

This might seem at first sight surprising since it occurs so deep in the insulating regime but
we shall see that it is not inconsistent with Mott’s original concept of variable range hopping
[11]. The length scale and strength of the variations of the random impurity potential in the
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Figure 1. δ is the width of the undoped spacer layer separating a 2D electron system from the layer
of dopants in modulation-doped GaAs/AlGaAs heterojunction. For a mesoscopic system shorter
than length scale of long-range disorder, it is the short-range fluctuations of the random impurity
potential of O[δ] that will dominate.
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Figure 2. Points are measured resistivity ρ as a function of T at fixed electron densities n taken
from figure 2 of [10]. (Points in (b) and (c) are the same.) Curves in (a) and (b) are calculated
using equation (6). For the curve in (c) we used equation (9).

mesoscopic samples of [10] are much smaller than in their macroscopic samples, and we
propose that this significantly increases the effect of quantum tunnelling rates between states
of the same energy.

We start with a 2D system in the insulating regime which is a composite of an insulating
phase I and a metallic (conducting) phase M (figure 3(a)). We assume at an insulator–metal
transition at critical density nc the ground state energies EI (n) and EM(n) cross. We initially
assume the random potential Vimp(r) associated with the impurities varies smoothly, in the
sense that its fluctuation length scale �v exceeds the correlation length of the metallic phase
ξM . The local energy density is then given by E(μ − Vimp(r)), with μ being the chemical
potential.

The impurity potential Vimp(r) breaks the system into domains approximately bounded
by equipotential contours Vimp(r) = μc where μc is the chemical potential at the density nc.
This leads to spatial inhomogeneities in the local electron density. Such a domain model has
been employed by Shimshoni et al [12] to study transport properties near the phase transition

3



J. Phys. A: Math. Theor. 42 (2009) 214012 D Neilson and A R Hamilton

(a) (b) (c)

Figure 3. (a) Arrows indicate the direction of transport across short (L ∼ 0.5–2 μm) mesoscopic
2D electron insulating state. With disorder, the insulating system can break up into a composite
of insulating I (light) and metallic M (shaded) domains. (b) At boundaries of adjacent metallic
domains (solid lines) Vimp(r) is a constant μc . The metallic domains are separated by a distance d.
Hatched region δA is the excess area of the insulating domain for the junction. �v is the fluctuation
length scale of Vimp(r). (c) Upper panel: at higher T, the phase coherence length �φ is shorter
than average dimensions of the metallic regions, �v , and only incoherent propagation across each
metallic region contributes. Lower panel: at low T the length �φ becomes comparable to �v , and
coherent propagation across two metallic regions becomes possible.

for quantum Hall insulators and superconductors. Meir [13] and Neilson et al [14] have
used the domains model to study transport around the 2D metal–insulator transition, with the
domains consisting of coexisting metal and insulating phases. The metallic domains will form
in regions of higher electron density Vimp(r) < μc, with the insulating domains occupying the
remaining areas.

In the domains model for 2D systems, the percolation threshold occurs when the total
areas of the two types of domains are equal, so the critical insulator area fraction is p = 1

2 . For
this unique value of p, both the insulating and metallic domains contain at least one connected
path across the sample, and all neighbouring domains will touch just at one point. Vimp(r)
must form a saddle point centred on the contact point since it increases from the contact point
as we move into the adjacent metallic domains (lower electron density) but decreases as we
move into the adjacent insulating domains (higher electron density).

As the average electron density n is decreased away from the percolation threshold, the
metallic phase retreats from the centre of the junction and is replaced by the insulating phase.
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The dotted lines in figures 3(a) and (b) mark the domain boundaries at the transition where the
area fraction was exactly equal to p = 1

2 . Thus the area of the insulating phase at the junction
for all p > 1/2 will exceed the area of the metallic phase by δA. This is the area enclosed by
the metallic boundaries and the dotted lines. Assuming a hyperbolic form for each metallic
boundary near the junction it is straightforward to show [12]

δA = (1/2) log(�V /d)d2, (1)

where d is the minimum distance separating adjacent metallic phase domains and is a function
of electron density. �V is the fluctuation length scale of the random impurity potential, which
we assume is large compared with d.

Mott’s original concept of variable range hopping describes the behaviour of the resistivity
in strongly disordered systems with hopping between localized states centred on fixed sites.
There is competition between the overlap term for two localized regions and the energy
activation. The overlap term favours short hops, while energy activation favours long hops
since long hops will provide more opportunity to reduce the activation energy. As the
temperature is decreased the range of activation energies becomes ever more restricted, and this
favours the longer hops. As the average hops become longer, the optimized overlaps decrease,
leading to the familiar result of a resistivity that increases exponentially with decreasing
temperature.

In the domains model, the same variable range hopping mechanism acts at higher
temperatures, but at low enough temperatures the transmission will be dominated by tunnelling
between adjacent metallic regions, with both regions bounded by equipotential contours of the
same value (figure 3(b)). This transmission is independent of temperature and is given by the
zero-temperature tunnelling rate.

In the domains model, we determine the resistivity from the transmission across the
quantum junctions as a function of d since the primary contribution to the resistivity comes
from the saddle point of the potential near Vimp(r) ∼ μc. We initially assume that quantum
interference effects take place only on a length scale small compared with �V so there is no
coherence between tunnelling events. For a finite width distribution of junction resistances in
a two-dimensional array, the total resistance is given by the resistance of the most resistive
junction, the so-called ‘worst resistance’ [13, 15]. The resistivity depends on the temperature-
dependent transmission rate T (T ) through this junction, ρ(T ) = (1 − T (T ))/T (T ) in units
of h̄/e2.

Since at relatively high temperatures the transport across the junction is by thermally
activated hopping, the transmission is

Tth ∼
∫ ∞

Vbarr

exp(−E/kBT ) dE

= T0 exp

(
−Vbarr

kBT

)
. (2)

The constant T0 is the transmission for d = 0, that is at the percolation threshold. Vbarr is the
barrier height across the junction. It is related to V ′′, the curvature of the impurity potential at
the junction, by Vbarr = (1/2)V ′′(d/2)2.

The zero-temperature tunnelling transmission through the barrier is given by

Ttun(0) ∼ exp(−2S(d)) = T0 exp(−S ′′d2), (3)

where the action across the barrier is S(d) � S(0) + 1
2S ′′d2. The second derivative of the

action can be expressed as S ′′ = (π/2h̄)
√

mV ′′, so equation (3) can be written as

Ttun(0) = T0 exp(−(π/2h̄)
√

mV ′′d2)

= T0 exp(−(π/h̄)
√

2mVbarrd). (4)
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From equations (2) and (4) the resistivity can be written in two limits as

ρ(T , n) = T −1
0 exp

[
π

√
2mVbarr

h̄
d

]
− 1; T = 0 (5a)

= T −1
0 exp

[
Vbarr

kBT

]
− 1; large T . (5b)

Equation (5) gives the limiting behaviours of the resistivity. The resistivity increases
exponentially with decreasing temperature at higher temperatures but it goes to a finite low-
temperature value because of quantum tunnelling between states of the same energy in adjacent
metallic domains.

Interpolating between these contributions, we can write

ρ(T , n)−1 = T0 exp

[
−π

√
2mVbarrd

h̄

]
+ T0 exp

[
−Vbarr

kBT

]
− 1. (6)

We used equation (6) to fit measured temperature-dependent resistivity data from figure 2 in
[10]. The solid lines in figures 2(a) and (b) show the fits of equation (6) to the experimental
points. For electron density n = 0.94×1010 cm−2 the fitting parameters were Vbarr = 0.5 meV,
d = 5 nm, T0 = 0.03 s−1, and for n = 1.16×1010 cm−2, Vbarr = 0.2 meV, d = 2 nm, T0 = 0.03
s−1. We conclude that equation (6) reproduces the features of the experimental data very well,
with the exception of the turn-down in the measured resistance for T � 1 K in figure 2(b).

We now investigate the cause of this drop in resistance. We note that it is a relatively
small effect, �10% of the total resistance. It is clear that our model of a single junction, which
we have demonstrated, leads to a saturation of the resistance, cannot cause an actual drop in
resistance. Therefore we must generalize the model.

Up to this point we have assumed that the characteristic size of the conducting regions
is sufficiently large that the electrons always have time to decohere between tunnelling
events. However, this assumption must start to break down for sufficiently small T since the
coherence length, the characteristic scale for coherent propagation, is inversely proportional
to temperature: �φ = (h̄kF D)/(πT ) = h̄2k2

F �
/
(2πmkBT ) = (TF /T )(�/π), where � is the

mean free path for elastic scattering.
We estimate at electron densities for which TF ∼ 5 K that �φ becomes comparable to

� around T ∼ 1 K. We can assume � � �v . As �φ approaches �v from above, coherent
propagation across the metallic regions bounding the highest resistance junction becomes
increasingly likely (see figure 3(c)). In this case, the total transmission is the sum of the
incoherent transmission Tincoh plus a small contribution from coherent transmission Tcoh,

T̃tun = Tincoh + Tcoh. (7)

Tcoh becomes increasingly significant as the temperature is further decreased.
Since we are deep in the insulating region, we can expect the transmission probabilities

across the junction to be small. Then we can write equation (7) as [16]

T̃tun = Tincoh[1 − (1 − ε(T )) cos 
]. (8)

The probability that an electron traverses the conducting region without scattering, 1 − ε ∼
exp(−�v/�φ), is temperature dependent because of �φ, 1 − ε(T ) ∼ exp((−�v/�)(πT /TF )).
The phase 
 is the total phase change of the electron in its coherent transmission across the
conducting region and the junctions.

Generalizing equation (6) using equation (8), we can write the contribution to the
temperature-dependent resistivity from the combined effect of thermal hopping and tunnelling
as
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ρ(T , n)−1 = T0 exp

[
−π

√
2mVbarr d

h̄

] [
1 − exp

[(
−�v

�

) (
πT

TF

)]
cos 


]

+ T0 exp

[
−Vbarr

kBT

]
− 1. (9)

We used equation (9) to fit the resistivity data from figure 2 in [10] for electron density
n = 1.16 × 1010 cm−2. The solid line in figure 2(c) shows the excellent fit to the experimental
points we obtain using equation (9). This now includes the turn-down in the resistivity at
low T. Since the coherence effect remains a small correction down to the lowest temperatures
in the experimental data, ∼50 mK, we only needed to fit the additional parameters, the ratio
(�v/�) and the phase 
, leaving Vbarr, d and T0 unchanged from figure 2(b). The values in
figure 2(c) are (�v/�) = 14 and cos 
 = −0.1.

The potential barriers, Vbarr ∼ 0.2–0.5 meV, are much smaller than the variations
�Vdisorder ∼ 2–5 meV measured in macroscopic samples by Finkelstein et al [2] and
Chakraborty et al [3]. The values of the length scale of the disorder variation reported in
[2, 3] are also much greater than our values for d. This is consistent with the suggestion that
in the mesoscopic samples of [10] it is short-range fluctuations of O(δ) that dominate.

In conclusion, we have applied a model for the insulating phase of the 2D electron
system in which there are domains of metallic and insulating regions caused by the random
fluctuations of the impurity potential. This leads to calculated resistivities with properties
that are in agreement with recent measurements of the temperature-dependent resistivity in
mesoscopic samples. The analysis requires only that the insulating component is sufficiently
insulating for transport to be dominated by a path that avoids the insulating component as
much as possible. Thus the model can apply well into the insulating regime, with resistances
as large as ρ ∼ 400(e2/h). The observed crossover to a saturation of the temperature-
dependent resistivity for T � 1 K is understood as the effect of quantum tunnelling between
states of equal energy. This is due to the boundaries of the adjacent metallic regions having
equipotential contours of the same value and leads to a transmission that is independent of
temperature. We associate the small turn-down in the resistivity which sometimes occurs with
the increase in the quantum coherence length as the temperature is lowered.

The reason in the mesoscopic systems that the effects are observed at temperatures as high
as T ∼ 1 K is that the weaker variations of the random impurity potential lead to lower potential
barriers Vbarr between the adjacent metallic regions than is the case for the corresponding
macroscopic systems. In addition, the shorter-range nature of the random impurity potential
reduces the separations d between adjacent metallic regions. These decreases in Vbarr and d
favour tunnelling between equal energy states of neighbouring metallic regions.
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